Conjugacy rigidity for nonpositively curved graph manifolds
نویسنده
چکیده
We show that the metric of nonpositively curved graph manifolds is determined by its geodesic flow. More precisely we show that if the geodesic flows of two nonpositively curved graph manifolds are C0 conjugate then the spaces
منابع مشابه
Virtual Cubulation of Nonpositively Curved Graph Manifolds
In this paper, we show that an aspherical compact graph manifold is nonpositively curved if and only if its fundamental group virtually embeds into a right-angled Artin group. As a consequence, nonpositively curved graph manifolds have linear fundamental groups.
متن کاملOn actions of discrete groups on nonpositively curved spaces
This note contains several observations concerning discrete groups of non-parabolic isometries of spaces of nonpositive curvature. We prove that (almost all) surface mapping class groups do not admit such actions; in particular, they do not act cocompactly. A new obstruction to the existence of a nonpositively curved metric on closed manifolds is presented. We give examples of 4-manifolds bered...
متن کاملSe p 20 09 SMOOTH ( NON ) RIGIDITY OF CUSP - DECOMPOSABLE MANIFOLDS
We define cusp-decomposable manifolds and prove smooth rigidity within this class of manifolds. These manifolds generally do not admit a nonpositively curved metric but can be decomposed into pieces that are diffeomorphic to finite volume, locally symmetric, negatively curved manifolds with cusps. We prove that the group of outer automorphisms of the fundamental group of such a manifold is an e...
متن کاملAsymptotic geometry and growth of conjugacy classes of nonpositively curved manifolds
Let X be a Hadamard manifold and Γ ⊂ Isom(X) a discrete group of isometries which contains an axial isometry without invariant flat half plane. We study the behavior of conformal densities on the limit set of Γ in order to derive a new asymptotic estimate for the growth rate of closed geodesics in not necessarily compact or finite volume manifolds.
متن کاملCompactifications of Complete Riemannian Manifolds and Their Applications
To study a noncompact Riemannian manifold, it is often useful to nd a compacti cation or attach a boundary. For example, in hyperbolic geometry a lot of investigation is carried out on the sphere at in nity. An eminent illustration is Mostows proof of his rigidity theorem for hyperbolic manifolds [Mo]. More generally, if f M is simply connected and nonpositively curved, one can compactify it ...
متن کامل